132 research outputs found

    Moderate deviations for particle filtering

    Full text link
    Consider the state space model (X_t,Y_t), where (X_t) is a Markov chain, and (Y_t) are the observations. In order to solve the so-called filtering problem, one has to compute L(X_t|Y_1,...,Y_t), the law of X_t given the observations (Y_1,...,Y_t). The particle filtering method gives an approximation of the law L(X_t|Y_1,...,Y_t) by an empirical measure \frac{1}{n}\sum_1^n\delta_{x_{i,t}}. In this paper we establish the moderate deviation principle for the empirical mean \frac{1}{n}\sum_1^n\psi(x_{i,t}) (centered and properly rescaled) when the number of particles grows to infinity, enhancing the central limit theorem. Several extensions and examples are also studied.Comment: Published at http://dx.doi.org/10.1214/105051604000000657 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quantitative bounds on convergence of time-inhomogeneous Markov chains

    Full text link
    Convergence rates of Markov chains have been widely studied in recent years. In particular, quantitative bounds on convergence rates have been studied in various forms by Meyn and Tweedie [Ann. Appl. Probab. 4 (1994) 981-1101], Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558-566], Roberts and Tweedie [Stochastic Process. Appl. 80 (1999) 211-229], Jones and Hobert [Statist. Sci. 16 (2001) 312-334] and Fort [Ph.D. thesis (2001) Univ. Paris VI]. In this paper, we extend a result of Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558-566] that concerns quantitative convergence rates for time-homogeneous Markov chains. Our extension allows us to consider f-total variation distance (instead of total variation) and time-inhomogeneous Markov chains. We apply our results to simulated annealing.Comment: Published at http://dx.doi.org/10.1214/105051604000000620 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Convergence of adaptive mixtures of importance sampling schemes

    Full text link
    In the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performance of a given simulation kernel can clarify a posteriori how adequate this kernel is for the problem at hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm. While the issue is most often intractable for MCMC algorithms, the equivalent version for importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions for adaptive mixtures of population Monte Carlo algorithms and show that Rao--Blackwellized versions asymptotically achieve an optimum in terms of a Kullback divergence criterion, while more rudimentary versions do not benefit from repeated updating.Comment: Published at http://dx.doi.org/10.1214/009053606000001154 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Adaptive Importance Sampling in General Mixture Classes

    Get PDF
    In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. The method is shown to be applicable to a wide class of importance sampling densities, which includes in particular mixtures of multivariate Student t distributions. The performances of the proposed scheme are studied on both artificial and real examples, highlighting in particular the benefit of a novel Rao-Blackwellisation device which can be easily incorporated in the updating scheme.Comment: Removed misleading comment in Section

    Maximum Likelihood Estimator for Hidden Markov Models in continuous time

    Full text link
    The paper studies large sample asymptotic properties of the Maximum Likelihood Estimator (MLE) for the parameter of a continuous time Markov chain, observed in white noise. Using the method of weak convergence of likelihoods due to I.Ibragimov and R.Khasminskii, consistency, asymptotic normality and convergence of moments are established for MLE under certain strong ergodicity conditions of the chain.Comment: Warning: due to a flaw in the publishing process, some of the references in the published version of the article are confuse

    Minimum variance importance sampling via Population Monte Carlo

    Get PDF
    International audienceVariance reduction has always been a central issue in Monte Carlo experiments. Population Monte Carlo can be used to this effect, in that a mixture of importance functions, called a D-kernel, can be iteratively optimised to achieve the minimum asymptotic variance for a function of interest among all possible mixtures. The implementation of this iterative scheme is illustrated for the computation of the price of a European option in the Cox-Ingersoll-Ross model

    Convergence of adaptive sampling schemes

    Get PDF
    International audienceIn the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performances of a given kernel can clarify how adequate it is for the problem at hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm. While the issue is quite complex and most often intractable for MCMC algorithms, the equivalent version for importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions for a wide class of population Monte Carlo algorithms and show that Rao-Blackwellized versions asymptotically achieve an optimum in terms of a Kullback divergence criterion, while more rudimentary versions simply do not benefit from repeated updating

    A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models

    Get PDF
    This paper addresses the problem of Monte Carlo approximation of posterior probability distributions. In particular, we have considered a recently proposed technique known as population Monte Carlo (PMC), which is based on an iterative importance sampling approach. An important drawback of this methodology is the degeneracy of the importance weights when the dimension of either the observations or the variables of interest is high. To alleviate this difficulty, we propose a novel method that performs a nonlinear transformation on the importance weights. This operation reduces the weight variation, hence it avoids their degeneracy and increases the efficiency of the importance sampling scheme, specially when drawing from a proposal functions which are poorly adapted to the true posterior. For the sake of illustration, we have applied the proposed algorithm to the estimation of the parameters of a Gaussian mixture model. This is a very simple problem that enables us to clearly show and discuss the main features of the proposed technique. As a practical application, we have also considered the popular (and challenging) problem of estimating the rate parameters of stochastic kinetic models (SKM). SKMs are highly multivariate systems that model molecular interactions in biological and chemical problems. We introduce a particularization of the proposed algorithm to SKMs and present numerical results.Comment: 35 pages, 8 figure

    Sampling constrained probability distributions using Spherical Augmentation

    Full text link
    Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet allocation (LDA). Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. In this paper, we propose a novel augmentation technique that handles a wide range of constraints by mapping the constrained domain to a sphere in the augmented space. By moving freely on the surface of this sphere, sampling algorithms handle constraints implicitly and generate proposals that remain within boundaries when mapped back to the original space. Our proposed method, called {Spherical Augmentation}, provides a mathematically natural and computationally efficient framework for sampling from constrained probability distributions. We show the advantages of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian Monte Carlo, using several examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary Gaussian process, and LDA for topic modeling.Comment: 41 pages, 13 figure
    • …
    corecore